
Perception of Software Bots on Pull Requests on Social Coding
Environments

Mairieli Wessel1,2, Igor Steinmacher3, Marco A. Gerosa1,3

1 University of São Paulo, Brazil

2Radboud University, The Netherlands

3Northern Arizona University, USA

mairieli.wessel@ru.nl, {igor.steinmacher,marco.gerosa}@nau.edu

Abstract. Software bots connect users and tools, streamlining the pull request
review process in social coding platforms. Nevertheless, the presence of bots
can be annoying and disruptive to the community. Interviewing open-source
developers, we created a theory of how human developers perceive annoying bot
behaviors as noise. To identify strategies to overcome such problems, we applied
Design Fiction as a participatory method with practitioners. Our findings may
help practitioners understand the effects of adopting a bot, and researchers and
tool designers may leverage our results to better support human-bot interaction
on social coding platforms.

Resumo. Os software bots conectam usuários e ferramentas, simplificando o
processo de revisão de pull requests em plataformas sociais de codificação.
No entanto, a presença destes bots pode ser prejudicial para a comunidade.
Entrevistando desenvolvedores de código aberto, criamos uma teoria de como
desenvolvedores humanos percebem comportamentos irritantes de bots como
ruı́do. Para identificar estratégias para superar tais problemas, aplicamos o
Design Fiction como método participativo com desenvolvedores e pesquisado-
res. Nossas descobertas podem ajudar os profissionais a entender os efeitos da
adoção de um bot, e pesquisadores e designers de ferramentas podem utilizar
nossos resultados para apoiar a interação humano-bot em plataformas sociais
de codificação.

1. Introduction
Open-source software development is inherently collaborative, frequently involving ge-
ographically dispersed contributors. OSS projects often are hosted in social coding
platforms, such as GitHub and GitLab, which provide features that aid collaboration
and sharing, such as pull requests [Tsay et al. 2014]. Pull requests facilitate interaction
among developers to review and integrate code contributions. In the pull-based deve-
lopment model, project maintainers carefully inspect code changes and engage in dis-
cussion with contributors to understand and improve the modifications before integrating
them into the codebase [McIntosh et al. 2014]. The time maintainers spend reviewing
pull requests is non-negligible and can affect, for example, the volume of new contributi-
ons [Yu et al. 2015] and the onboarding of newcomers [Steinmacher et al. 2013].

Software bots play a prominent role in the pull request review pro-
cess [Wessel et al. 2018]. These automation tools serve as an interface between users



and other tools [Storey and Zagalsky 2016] and reduce the workload of maintainers and
contributors. Accomplishing tasks that were previously performed solely by human de-
velopers, and interacting in the same communication channels as their human counter-
parts, bots have become new voices in the pull request conversation [Monperrus 2019].
Throughout comments on pull requests, bots guide contributors to provide necessary
information before maintainers triage the pull requests [Wessel et al. 2018]. To al-
leviate their workload [Gousios et al. 2016], project maintainers often rely on soft-
ware bots to check whether the code builds, the tests pass, and the contribution
conforms to a defined style guide [Vasilescu et al. 2015, Kavaler et al. 2019]. More
complex tasks include repairing bugs [Urli et al. 2018, Monperrus 2019], refactoring
source code [Wyrich and Bogner 2019], recommending tools [Brown and Parnin 2019],
updating dependencies [Mirhosseini and Parnin 2017], and fixing static analysis violati-
ons [Carvalho et al. 2020].

The introduction of bots aims to save cost, effort, and
time [Storey and Zagalsky 2016], allowing maintainers to focus on development
and review tasks. However, new technology often brings consequences that coun-
ter designers’ and adopters’ expectations [Healy 2012]. Developers who a priori
expect technological developments to lead to performance improvements can be
caught off-guard by a posteriori unanticipated operational complexities and collateral
effects [Woods and Patterson 2001]. For example, we have shown that although the num-
ber of human comments decreases after the introduction of bots [Wessel et al. 2020b],
many developers do not perceive this decrease [Wessel et al. 2020a]. These col-
lateral effects and the misalignment between the preferences and needs of project
maintainers and bot developers can cause expectation breakdowns, as illustrated by
a developer complaining on social media: “Whoever wrote [bot-name] fundamen-
tally does not understand software development.”1 Moreover, as bots have become
new voices in developers’ conversation [Monperrus 2019], they may overburden
developers who already suffer from information overload when communicating on-
line [Nematzadeh et al. 2016]. On an abandoned pull request, a maintainer noted the
frequency of actions of a bot: “@bot-name seems pretty active here [...].”2 As the
introduction of a technology may provoke changes in human behavior [Mulder 2013],
it is important to understand how bots affect the group dynamics; yet, this is often
neglected [Storey and Zagalsky 2016, Paikari and van der Hoek 2018].

Considering developers’ perspectives on the overall effects of introducing bots,
designers can revisit their bots to better support the interactions in the development work-
flow and account for collateral effects. So far, the literature presents scarce evidence, and
only as secondary results, of the challenges incurred when adopting bots. According to
[Brown and Parnin 2019], the human-bot interaction on pull requests can be inconvenient,
leading developers to abandon their contributions due to poor bots’ design. This problem
may be especially relevant for newcomers, who require special support during the onbo-
arding process due to the barriers they face [Steinmacher et al. 2016]. Newcomers can
perceive bots’ complex answers as discouraging, since bots often provide a long list of
critical contribution feedback (e.g., style guidelines, failed tests), rather than supportive

1https://twitter.com/mojavelinux/status/1125077242822836228
2https://github.com/facebook/react/pull/12457\#issuecomment-413429168



assistance.

To make bots more effective at communicating to developers, design problems
need to be solved to avoid repetitive notifications, provide consistency in the tasks being
done, and make bots adaptive [Storey et al. 2020, Liu et al. 2020]. Designers should envi-
sion bots as socio-technical rather than purely technical applications, considering human
interaction, developers’ collaboration, and ethical concerns [Storey and Zagalsky 2016].
The adoption of bots in open-source projects is a recent trend and the literature lacks de-
sign strategies that include the end-users’ perspective to enhance the bots interaction on
social coding platforms. Considering this context, in this study we aim at identifying the
challenges incurred by bots on pull requests and interventions to mitigate them.

The main contributions of this paper are:

1. Open-source developers’ perspective on the importance and support of bots.
2. The identification of changes in project activity indicators after the adoption of a

bot.
3. A theory of how human developers perceive annoying bot behaviors as noise on

social coding platforms.
4. Design strategies and interventions that could enhance current bot interaction and

reduce noise.

With a more in-depth understanding of the challenges incurred by the bots’ inte-
raction and promising ways to enhance the human-bot interaction, researchers and prac-
titioners can invest their efforts in designing or improving bots, ultimately supporting
developers in submitting and reviewing pull requests.

2. Related Work
According to [Storey and Zagalsky 2016], a software development bot is “a conduit or
an interface between users and services, typically through a conversational user inter-
face”. In the following, we provide more details about the existing literature related to
the human-bot interaction, especially on social coding platforms.

2.1. Bots on social coding platforms
Software development bots assist developers in their daily tasks such as ge-
nerating bug fixes [Serban et al. 2021], answering developers’ technical questi-
ons [Abdellatif et al. 2020], and performing code refactoring [Wyrich and Bogner 2019].
Certain bots have been studied in detail, revealing challenges and limitations of their in-
terventions in pull requests. For example, while analyzing the tool-recommender-bot,
[Brown and Parnin 2019] report that bots still need to overcome problems such as notifi-
cation workload. [Mirhosseini and Parnin 2017] analyzed the greenkeeper bot and found
that maintainers were often overwhelmed by notifications and only a third of the bots’ pull
requests were merged into the codebase. [Peng and Ma 2019] conducted a case study on
how developers perceive and work with mention bot. The results show that this bot has
saved developers’ efforts; however, it may not meet the diverse needs of all users. For
example, while project owners require simplicity and stability, contributors require trans-
parency, and reviewers require selectivity. Despite its potential benefits, results also show
that developers can be bothered by frequent review notifications when dealing with a he-
avy workload.



2.2. Mediator bots

Mediator bots have been proposed in the literature in different domains. For example,
Sadeddin et al. [Sadeddin et al. 2007] showed that a meta-bot could obtain product infor-
mation from several shopping bots and summarize the information before presenting it
to users. Previous research also investigated the user experience when interacting with
single- vs. multi-bot conversational systems. In a Wizard-of-Oz study, Chaves and Ge-
rosa [Chaves and Gerosa 2018] showed that participants reported more confusion in a
multi-bot scenario than when using a meta-bot. The meta-bot concept also appears in the
literature on software agents. Generalist agents are usually referred to as Super Bots or
mediator bots [Dagli 2019], since they often combine multiple tasks and functionalities of
specialist agents into a single agent. Given this preliminary evidence from other domains,
we hypothesize that a mediator bot can organize information and reduce information
overload created by other bots around pull requests.

3. Research Design

As a warm-up study, we started our investigation by characterizing the bots that support
pull requests on GitHub. We sampled 351 popular projects from GitHub and surveyed
228 open-source developers. Our results indicate that bot adoption is widespread in open-
source software projects and is used to perform a variety of tasks on pull requests. Develo-
pers also report some challenges of using bots on pull requests. Several contributors com-
plained about the way the bots interact, saying that the bots provide non-comprehensive
or poor feedback. In contrast, others mentioned that bots introduce communication noise
and that there is a lack of information on how to interact with the bot. To further un-
derstand the challenges related to bot adoption and how to deal with them, we devised a
study3 split into three phases to answer the following research questions:

Research Question 1
How do pull request activities change after a bot is adopted in a project?

Since bots may bring unexpected impacts to group dynamics, as frequently occurs
with new technology adoption, understanding and anticipating such effects is important
for planning and management. In this RQ, we investigate whether project activity in-
dicators, such as the number of pull requests merged and non-merged, number of com-
ments, the time to close pull requests, and number of commits change after bot adoption.
We used a Regression Discontinuity Design [Thistlethwaite and Campbell 1960] to mo-
del the effect of bot adoption across 1,194 projects that had adopted bots for at least one
year. Afterward, to further shed light on our results, we conducted 12 semi-structured
interviews with practitioners, including open-source project maintainers and contributors
experienced with bots. Our results indicate that the adoption of bots, in fact, changes
the dynamics of pull request activities. These results motivated us to investigate further
developers’ perspectives on the overall effects of introducing bots to open-source projects.

Research Question 2
What interaction challenges do bots introduce when supporting pull requests?

3Our institutional review board approved the research protocol



To understand the impact of bots interaction in-depth, we then focused on investi-
gating the challenges incurred by bots interaction on pull requests. We identified several
challenges caused by bots in pull request interactions by interviewing 21 practitioners,
including project maintainers, contributors, and bot developers. In particular, our findings
indicate noise as a recurrent and central problem. Noise affects both human communica-
tion and development workflow by overwhelming and distracting developers. The main
contribution for this research question is a theory of how human developers perceive an-
noying bot behaviors as noise on social coding platforms.

Research Question 2
What design strategies can potentially reduce the noise created by bots on pull re-
quests?

As noise emerged as a central interaction challenge from our empirical analysis,
we have further investigated how to overcome it. We created two interventions: (1) a
mediator bot that organizes existing bot information in a pull request, and (2) a separate
interface for the bot interaction in the pull request. To design and implement the interven-
tions, we applied Design Fiction [Blythe 2014], a technique that has been broadly used
in the Human-Computer Interaction field to explore and critique future technologies. We
presented to 32 open-source maintainers, contributors, bot developers, and bot researchers
a fictional story of a mediator bot capable of better supporting developers’ interactions on
pull requests and operating as a mediator between developers and the existing bots. Du-
ring synchronous design fiction sessions, participants answered questions to complete the
end of the fictional story, discussing the design strategies for the mediator bot and raising
concerns about the use of bots.

4. Findings

In the following, we report the results of our study by research question.

4.1. Effects of adopting a bot on pull requests (RQ1)

We start by investigating the effects of bot adoption on the number of merged and non-
merged pull requests, and the number of pull requests merged and non-merged, number
of comments, the time to close pull requests, and number of commits on both merged and
non-merged pull requests. We fit eight mixed-effect regression discontinuity design mo-
dels for those variables. Analyzing the models, we found that after bot adoption more pull
requests are merged into the codebase, and communication decreases between contribu-
tors and maintainers. Considering non-merged pull requests, after bot adoption projects
have fewer monthly non-merged pull requests, and faster pull request rejections.

We then presented to open-source developers the main findings of our statisti-
cal approach: “After adopting a code review bot there are more merged pull requests,
less communication between developers, fewer rejected pull requests, and faster rejec-
tions.” We asked them to conjecture on the possible reasons for each of these results.
Project maintainers and contributors reported several reasons for more merged pull re-
quests, fewer comments, and fewer and faster rejections. Most of the participants claimed
that when a project has bots that provide detailed information on code quality metrics,
especially in the sense of coverage metrics, both maintainers and contributors can more



quickly gain a general idea of the quality of the contributions. According to the parti-
cipants, one of the reasons for more pull requests being merged after the code review
bot introduction is that these bots act as quality gatekeepers. Although less recurrent,
participants mentioned that in some cases bot comments might be perceived as noise by
developers, which disrupts the conversation in the pull request.

We also asked developers whether they have seen the observed effects on their
own projects, and what are the other effects they attribute to the code review bot adoption.
The most recurrent observed effect was less communication. As stated by one participant:
“I remember one of the maintainers saying ‘the tests are missing here.’ She always had to
post that comment. Then, we adopted the bot to comment on the coverage and had no need
for her to comment anymore.” Also, 6 participants observed fewer pull requests rejections
and faster rejections, and 5 participants have observed more merged pull requests. Finally,
developers did not attribute any other effect to the bot introduction.

Research Question 1
How do pull request activities change after a bot is adopted in a project?

We have found that the adoption of bots helps developers merge more pull requests
and reduces the need for communication between developers. According to them, bot
comments help them to understand the state and quality of the contribution, making
maintainers more confident to merge pull requests, which also changes the focus of
developer discussions.

4.2. Challenges of bots on pull requests (RQ2)

Interviewing practitioners, we have found three categories of reported challenges: inte-
raction, adoption, and development challenges. The most recurrent and central problem
reported by our interviewees was the introduction of noise into the developers’ commu-
nication channel. This problem was a crosscutting concern related to bots’ development,
adoption, and interaction in open-source software projects. Some developers complained
about annoying bot behaviors. Those behaviors include the case in which bots provide
comments with dense information “in the middle of the pull request”, frequently overu-
sing visual elements and the case in which bots perform repetitive actions, such as creating
numerous pull requests and leaving dozens of comments in a row. These behaviors are
often perceived as noise, which can lead to information and notification overload, which
disrupts both human communication and development workflow. To handle the challen-
ges provoked by noise, developers rely on countermeasures, such as re-configuring or
re-designing the bot.

To illustrate the described behaviors, we highlighted some examples cited by our
participants and described in the state-of-the-practice. Figure 1a shows the case of a
verbose comment, which included a lot of information and many graphical elements,
inserted by a bot in the middle of a human conversation. In Figure 1b, we show a bot
overloading a single repository with many pull requests, even if there were opened pull
requests by the same bot. Finally, Figure 1c depicts a bot spamming a repository with an
unsolicited pull request.



(a) Verbosity (b) High frequent actions (c) Unsolicited actions

Figura 1. Examples of annoying behaviors from the state-of-the-practice

Research Question 2
What interaction challenges do bots introduce when supporting pull requests?

Noise is a central challenge in bots’ interactions on pull requests. In short, we found
that the noise introduced by bots leads to information overload, which interferes with
how humans communicate, work, and collaborate on social coding platforms.

4.3. Mediator bot and separate interface for bots (RQ3)

I. Experts' pull request interface

[I.A] Separating bot
comments

[I.B] Keep the most recent
information

[I.C] Summarising,
categorising, and

prioritising bot comments 

II. Newcomers' pull request interface

[II.A] Welcoming message [II.B] Explaining rules,
instructions, and

requirements

[II.C] Provide information
interactively

Figura 2. Prototype of the interventions in a real-world scenario on GitHub.

One recommendation that appeared frequently in the design fiction sessions was to
offer different views for experienced developers and newcomers. Therefore, we split our
prototype into two different versions: the experts’ pull request interface (see Figure 2-
I), designed to support maintainers and experienced contributors; and the newcomers’
pull request interface (see Figure 2-II). We designed a specific place for all information
and events regarding bots in the pull request (Figure 2-I.A). The mediator bot creates
a summary with the most important information about each bot, then groups them into
categories (e.g., “warnings”, “information”) (Figure 2-I.C).

To avoid inflating the pull requests with several comments from the mediator bot,
one suggested strategy is to keep the most recent information. We include the latest in-
formation from each bot in the summary (Figure2-I.B). Reakit bot, for example, posted
two comments in the timeline of bot events; however, only one entry is displayed in the



summarized table for that bot. In addition, in the timeline of bot events, it is possible to
expand all bot comments to see the complete messages.

An important distinction between the two versions is the way the mediator bot
displays the information for newcomers versus experts. In Figure 2-II.C, we present the
interactive process of displaying bots’ information. The mediator bot guide newcomers
by showing the information from other bots “step by step.” Study participants deemed
this strategy a potential solution to reduce the impact of receiving several different bot
notifications at once. As part of this guidance, the mediator bot also refers to contribution
guidelines to assist the newcomers and present a concise and direct welcoming message.

To assess the developers’ perception of the designed interface, we interviewed
fifteen practitioners. The interviewees provided their feedback on particular aspects of
our findings, expressing their preferences about the elements of the designed prototype.
We also applied the Technology Acceptance Model (TAM) [Davis 1989], administering
a questionnaire immediately after concluding each interview.

The participants who gave feedback were, overall, positive about the prototype.
They perceived the designed interface as useful and easy to use, and would potentially
use it in the future, indicating the suitability of the design strategies. For instance, an ex-
perienced open-source maintainer reported: “I’m very resistant to bots; however, I liked
it a lot for a couple of reasons.” He explained that he appreciated the creation of a speci-
fic place for bots in the pull request, and the “compressed information” displayed by the
mediator bot, since he does not “need to open a CI page to know what happened”. Ac-
cording to another participant, when bot comments appear in between human comments,
it is easy to miss a piece of interesting information and our approach would help to avoid
that. In addition to the positive comments, we found that some design elements needed
improvements, including adding references to bot events in the main pull request timeline
and providing interactive feedback as an opt-out feature.

Research Question 2
What design strategies can potentially reduce the noise created by bots on pull re-
quests?

As a result of the design fiction methodology, we identified a series of design stra-
tegies for information management, newcomers’ assistance, notification management,
spam/failure managements, and platform support. Participants perceived our prototype
as a useful and easy to use, and would potentially use it in the future, indicating the
suitability of the design strategies.

5. Limitations

As any empirical research, our research presents some limitations and potential threats to
validity. In this section, we discuss them, their potential impact on the results, and how
we have mitigated these limitations.

Generalizability of the results Since we recruited practitioners experienced with bots
on the GitHub platform, our findings may not necessarily apply to other social coding
platforms, such as GitLab and Bitbucket. Although we do not anticipate big differences



in these platforms, additional research is necessary to investigate the transferability of the
results.

Data representativeness Although we conducted our study with a substantial number
of practitioners, we likely did not discover all possible challenges, strategies or provide
full explanations of them. We are aware that each bot as well as each project has its
singularities and that the open-source universe is expansive. Our strategies to keep col-
lecting data until reaching information saturation and to consider different practitioner
profiles and identify recurrent mentions of challenges and design strategies from multiple
perspectives aimed to alleviate this issue. Anyway, our findings reflect the perspective of
practitioners experienced with bots. Therefore, we acknowledge that additional research
is necessary to consider the perspective of those who do not have any experience with
bots on social coding platforms.

Information saturation We continued recruiting participants and conducting intervi-
ews until we came to an agreement that no new significant information was found. As
posed by Strauss and Corbin [Strauss and Corbin 1997], sampling may be discontinued
once the collected data is considered sufficiently dense and data collection no longer gene-
rates new information. As previously mentioned, we also made sure to interview different
groups with different perspectives on bots before deciding whether saturation had been
reached.

Reliability of results To improve the reliability of our findings, we employed a cons-
tant comparison method [Glaser and Strauss 2017]. In this method, each interpretation
is constantly compared with existing findings as it emerges from the qualitative analysis.
In addition, we also developed a prototype and collected feedback from the participants.
To check the reliability of the TAM instrument, we performed a reliability check on the
questionnaire items.

6. Conclusion
Motivated by the growing importance of software bots that act upon the pull-based de-
velopment model, we have investigated the challenges incurred by bots. We found three
categories of reported challenges: interaction, adoption, and development challenges. Bot
noisiness has appeared as a crosscutting concern in all three categories. Noisiness often
leads to communication issues and expectation breakdowns. Developers often complain
about bot verbose messages, timing, and high frequency of actions, which might be cau-
sed by platform limitations or bot configuration issues. Backed by the results of our
empirical studies, we have investigated strategies to mitigate noise and deal with some
of the identified challenges. Compared to the previous literature, our findings provide a
comprehensive understanding and exploration of design ideas to enhance the integration
between bots, humans, and social coding platforms.

Referências
Abdellatif, A., Badran, K., and Shihab, E. (2020). Msrbot: Using bots to answer questions

from software repositories. Empirical Software Engineering, 25(3):1834–1863.



Blythe, M. (2014). Research through design fiction: narrative in real and imaginary
abstracts. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 703–712. ACM.

Brown, C. and Parnin, C. (2019). Sorry to bother you: Designing bots for effective re-
commendations. In Proceedings of the 1st International Workshop on Bots in Software
Engineering, BotSE ’19, pages 54–58, Piscataway, NJ, USA. IEEE Press.

Carvalho, A., Luz, W., Marcilio, D., Bonifacio, R., Pinto, G., and Canedo, E. D. (2020).
C-3pr: A bot for fixing static analysis violations via pull requests. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 161–171. IEEE.

Chaves, A. P. and Gerosa, M. A. (2018). Single or multiple conversational agents? an
interactional coherence comparison. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, pages 1–13.

Dagli, M. (2019). Designing for Trust. PhD thesis, figshare.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS quarterly, pages 319–340.

Glaser, B. G. and Strauss, A. L. (2017). Discovery of grounded theory: Strategies for
qualitative research. Routledge.

Gousios, G., Storey, M.-A., and Bacchelli, A. (2016). Work practices and challenges
in pull-based development: The contributor’s perspective. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 285–296, New
York, NY, USA. ACM.

Healy, T. (2012). The unanticipated consequences of technology. Nanotechnology: ethi-
cal and social Implications, pages 155–173.

Kavaler, D., Trockman, A., Vasilescu, B., and Filkov, V. (2019). Tool choice matters:
Javascript quality assurance tools and usage outcomes in github projects. In Procee-
dings of the 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 476–487.

Liu, D., Smith, M. J., and Veeramachaneni, K. (2020). Understanding user-bot inte-
ractions for small-scale automation in open-source development. In Proceedings of
the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI EA ’20, page 1–8, New York, NY, USA. Association for Computing
Machinery.

McIntosh, S., Kamei, Y., Adams, B., and Hassan, A. E. (2014). The impact of code review
coverage and code review participation on software quality: A case study of the qt, vtk,
and itk projects. In Proceedings of the 11th Working Conference on Mining Software
Repositories, pages 192–201.

Mirhosseini, S. and Parnin, C. (2017). Can automated pull requests encourage software
developers to upgrade out-of-date dependencies? In Proceedings of the 32nd IE-
EE/ACM International Conference on Automated Software Engineering, ASE 2017,
pages 84–94, Piscataway, NJ, USA. IEEE Press.



Monperrus, M. (2019). Explainable software bot contributions: Case study of automa-
ted bug fixes. In Proceedings of the 1st International Workshop on Bots in Software
Engineering, BotSE ’19, pages 12–15, Piscataway, NJ, USA. IEEE Press.

Mulder, K. (2013). Impact of new technologies: how to assess the intended and uninten-
ded effects of new technologies. Handb. Sustain. Eng.(2013).

Nematzadeh, A., Ciampaglia, G. L., Ahn, Y.-Y., and Flammini, A. (2016). Information
overload in group communication: From conversation to cacophony in the twitch chat.
Royal Society open science, 6(10):191412.

Paikari, E. and van der Hoek, A. (2018). A framework for understanding chatbots and
their future. In Proceedings of the 11th International Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE ’18, pages 13–16, New York, NY,
USA. ACM.

Peng, Z. and Ma, X. (2019). Exploring how software developers work with mention bot
in github. CCF Transactions on Pervasive Computing and Interaction, 1(3):190–203.

Sadeddin, K. W., Serenko, A., and Hayes, J. (2007). Online shopping bots for electronic
commerce: the comparison of functionality and performance. International Journal of
Electronic Business, 5(6):576.

Serban, D., Golsteijn, B., Holdorp, R., and Serebrenik, A. (2021). Saw-bot: Proposing
fixes for static analysis warnings with github suggestions. In Workshop on Bots in
Software Engineering, United States. IEEE Computer Society.

Steinmacher, I., Conte, T. U., Treude, C., and Gerosa, M. A. (2016). Overcoming open
source project entry barriers with a portal for newcomers. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, pages 273–284, New
York, NY, USA. ACM.

Steinmacher, I., Wiese, I., Chaves, A. P., and Gerosa, M. A. (2013). Why do newco-
mers abandon open source software projects? In 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE), pages 25–32.
IEEE.

Storey, M.-A., Serebrenik, A., Rosé, C. P., Zimmermann, T., and Herbsleb, J. D. (2020).
BOTse: Bots in Software Engineering (Dagstuhl Seminar 19471). Dagstuhl Reports,
9(11):84–96.

Storey, M.-A. and Zagalsky, A. (2016). Disrupting developer productivity one bot at
a time. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2016, pages 928–931, New York, NY,
USA. ACM.

Strauss, A. and Corbin, J. M. (1997). Grounded theory in practice. Sage.

Thistlethwaite, D. L. and Campbell, D. T. (1960). Regression-discontinuity analysis:
An alternative to the ex post facto experiment. Journal of Educational psychology,
51(6):309.

Tsay, J., Dabbish, L., and Herbsleb, J. (2014). Let’s talk about it: Evaluating contributions
through discussion in github. In Proceedings of the 22Nd ACM SIGSOFT International



Symposium on Foundations of Software Engineering, FSE 2014, pages 144–154, New
York, NY, USA. ACM.

Urli, S., Yu, Z., Seinturier, L., and Monperrus, M. (2018). How to design a program repair
bot?: insights from the repairnator project. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, pages 95–
104. ACM.

Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., and Filkov, V. (2015). Quality and producti-
vity outcomes relating to continuous integration in github. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, page
805–816, New York, NY, USA. Association for Computing Machinery.

Wessel, M., de Souza, B. M., Steinmacher, I., Wiese, I. S., Polato, I., Chaves, A. P., and
Gerosa, M. A. (2018). The power of bots: Characterizing and understanding bots in
oss projects. Proc. ACM Hum.-Comput. Interact., 2(CSCW):182:1–182:19.

Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., and Gerosa, M. A. (2020a). What
to expect from code review bots on GitHub? a survey with OSS maintainers. In
Proceedings of the SBES 2020 - Ideias Inovadoras e Resultados Emergentes.

Wessel, M., Serebrenik, A., Wiese, I. S., Steinmacher, I., and Gerosa, M. A. (2020b).
Effects of adopting code review bots on pull requests to oss projects. In Proceedings
of the IEEE International Conference on Software Maintenance and Evolution. IEEE
Computer Society.

Woods, D. D. and Patterson, E. S. (2001). How unexpected events produce an escalation
of cognitive and coordinative demands. PA Hancock, & PA Desmond, Stress, workload,
and fatigue. Mahwah, NJ: L. Erlbaum.

Wyrich, M. and Bogner, J. (2019). Towards an autonomous bot for automatic source code
refactoring. In Proceedings of the 1st International Workshop on Bots in Software
Engineering, BotSE ’19, pages 24–28, Piscataway, NJ, USA. IEEE Press.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. (2015). Wait for it: Determi-
nants of pull request evaluation latency on GitHub. In 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pages 367–371.


