The Power of Bots: Understanding Bots in OSS Projects

MAIRIELI WESSEL, University of Sao Paulo, Brazil

BRUNO MENDES DE SOUZA, Federal University of Technology, Paran4, Brazil

IGOR STEINMACHER, Northern Arizona University, USA and Federal University of Technology, Parana,
Brazil

IGOR S. WIESE, Federal University of Technology, Paran4, Brazil

IVANILTON POLATO, Federal University of Technology, Paran4, Brazil

ANA PAULA CHAVES, Federal University of Technology, Parana, Brazil and Northern Arizona University,
USA

MARCO A. GEROSA, Northern Arizona University, USA

Leveraging the pull request model of social coding platforms, Open Source Software (OSS) integrators review
developers’ contributions, checking aspects like license, code quality, and testability. Some projects use bots to
automate predefined, sometimes repetitive tasks, thereby assisting integrators’ and contributors’ work. Our
research investigates the usage and impact of such bots. We sampled 351 popular projects from GitHub and
found that 93 (26%) use bots. We classified the bots, collected metrics from before and after bot adoption, and
surveyed 228 developers and integrators. Our results indicate that bots perform numerous tasks. Although
integrators reported that bots are useful for maintenance tasks, we did not find a consistent, statistically
significant difference between before and after bot adoption across the analyzed projects in terms of number of
comments, commits, changed files, and time to close pull requests. Our survey respondents deem the current
bots as not smart enough and provided insights into the bots’ relevance for specific tasks, challenges, and
potential new features. We discuss some of the raised suggestions and challenges in light of the literature
in order to help GitHub bot designers reuse and test ideas and technologies already investigated in other
contexts.

CCS Concepts: « Human-centered computing — Open source software;
Additional Key Words and Phrases: Automated agents; pull request; bots; open source; pull-based model

ACM Reference Format:

Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana Paula Chaves,
and Marco A. Gerosa. 2018. The Power of Bots: Understanding Bots in OSS Projects. Proceedings of the ACM on
Human-Computer Interaction 2, CSCW, Article 182 (November 2018), 19 pages. https://doi.org/10.1145/3274451

1 INTRODUCTION

Open Source Software (OSS) developers have a long tradition of collaborating on platforms such
as version control and bug reporting systems that support technical aspects of the development.
Recently, new platforms that better support social interaction have been proposed: the so-called
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“social-coding platforms” [12] (such as GitHub, GitLab, and Bitbucket), which are transforming
collaboration in software development [22, 60, 61]. These platforms provide features that aid
collaboration and sharing, such as pull requests, which have shaped software projects’ work prac-
tices [14, 22, 44, 71]. Previous work has examined how the pull-based model affects OSS developers
[23, 26, 42] and integrators’ behavior [11, 24]. This model offers new opportunities for community
engagement, but at the same time increases the workload for integrators to communicate, review
code, deal with license issues, explain project guidelines, run tests, and merge pull requests [23].

To reduce the workload with repetitive tasks, OSS communities have been adopting bots, which
are software agents that integrates their work with humans’ tasks [16], serving as a conduit between
users and services [55] and sometimes performing complex tasks that cannot be entirely auto-
mated [31]. Some bots (“chatbots” or “chatterbots”) interact with humans through a conversational
interface using natural language [31]. According to Farooq and Grudin [16], integration implies
partnership, which means that the partners complement each others’ activities. In this paper, we
analyzed bots in OSS projects (more specifically on GitHub) that have a user profile and play a role
within the development team, executing well-defined tasks that complements other developers’
work.

Bots are extensively proposed and analyzed in the literature of different domains, including social
media [1, 47, 70], online learning [20, 30, 38, 45], and Wikipedia [10, 19]. For collaborative software
engineering, some preliminary studies seek to understand bots and how they are used to interact
with messaging tools [34] and social media [41]. More specifically, some studies on bots focus on
continuous integration builds and deployment [63]. Although some preliminary work focuses on
the use of bots in software development projects [31, 55, 63], little is known about bots in OSS and
the challenges they impose from the integrators’ and contributors’ perspectives. Therefore, in this
paper we investigate how often popular software projects hosted on GitHub adopt bots. We also
report a quantitative analysis of activity indicators before and after bot adoption and a qualitative
analysis on how contributors and integrators perceive the relevance of bot support. We collected
data from 351 OSS projects and surveyed 205 contributors and 23 integrators.

From our data analysis, we make the following contributions: (i) bring attention to bots, a relevant
yet neglected resource that offers support for collaborative tasks in OSS; (ii) characterize the usage
of bots in OSS projects; (iii) elucidate how contributors and integrators see the importance and
support of bots; and (iv) present challenges introduced by bots and features that could enhance
current support.

2 BACKGROUND

The origin of bots dates back to 1950, when Alan Turing proposed that machines could think [62].
Since then, the interaction between computers and humans has been a challenge for researchers [13,
65, 75]. Recently, advances in fields such as Artificial Intelligence, Natural Language Processing, and
Machine Learning have enabled a proliferation of bots in several domains and the establishment of
partnerships in which computers and humans construct meaning around each other’s activities [16].
Bots enhance collaborative work [18] and influence changes in the workplace [33].

Technology enterprises have invested effort in developing bots as intelligent personal assistants,
such as Apple’s Siri [68] and Google Assistant [49], using conversational interfaces to help users
perform a wide set of personal tasks. In contrast, thousands of bots perform single, particular tasks
in a narrow domain of expertise [13]. For example, bots have been applied in the educational con-
text [27], focusing on students’ engagement [4, 6, 17], self-guided learning [40], course advising [28],
tutoring [56, 57], and coaching [35]. There are also bots in marketing, e-commerce [36, 58], and
customer services [21, 25]. Bots have also played a relevant role in peer production communities,
such as Wikipedia [10, 18] and social networks [1].
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In Software Engineering, bots support several activities, such as communication and decision-
making [55]. Previous studies on how developers use bots in a popular messaging tool evidenced
that bots support both technical and social activities [34]. In collaborative software development
environments, bots automate tasks that generally require human interaction [31]. For example, Urli
et al. [63] propose a bot that serves as a program repair tool-chain for continuous integration build
failures in projects hosted on GitHub. Pérez-Soler et al. [41] developed a bot that interacts with
developers via social networks to orchestrate collaborative software modeling. Beschastnikh et al.
[5] proposed the use of bots as a solution for the automated deployment and evaluation of software
engineering analysis techniques. However, while these studies provide recommendations on how
to develop bots, as well as evaluate bots’ capabilities and performance, they do not draw attention
to the impact of bot adoption on software development or how software engineers perceive the
bots’ support.

Towards understanding the practical implications of bot adoption, Storey and Zagalsky [55]
describe a cognitive framework to explain how bots support software development productivity.
The framework identifies the roles bots play for different phases of the software development
lifecycle, as well as the bots’ contributions to developers’ efficiency and effectiveness. Paikari
and van der Hoek [39] introduce a framework to examine the current state of bots and identify
directions for future work. Mirhosseini and Parnin [37] suggest that bots can encourage project
maintainers to update dependencies and Lebeuf et al. [32] investigate how bots can potentially
mitigate collaboration breakdowns. Although these papers analyzed the role of bots in software
development, they do not focus on how contributors and integrators perceive the bots during their
activities and the effects of bot adoption.

3 METHOD

This study aims to understand bot usage on GitHub projects, answering three research questions:

‘ RQ1. How common are bots in GitHub projects? ‘

We aimed to understand how commonly OSS projects use bots and what they use them for by
manually analyzing a subset of the most starred projects from GitHub.

‘ RQ2. How do the characteristics of pull requests compare before and after the bot adoption? ‘

By answering this question, we want to understand whether the acceptance rate, interaction, and
decision-making time of a project change after the bot adoption. We quantitatively analyzed pull
requests of 44 software projects, investigating the number of merged and unmerged pull requests,
number of commits, time-to-close, and number of comments.

RQ3. How do contributors and integrators perceive bots’ support during the pull request
submission process?

In this research question, we analyze the contributors’ and integrators’ perspectives by means of
a survey aimed at understanding: (1) whether stakeholders perceive the presence of bots on pull
request that they submit/merge; (2) whether stakeholders agree about the relevance of bot support
on software tasks; (3) problems/challenges of using bots; and (4) missing features.

3.1 Selecting OSS Projects

We selected OSS projects hosted on GitHub (excluding non-software projects, such as textbooks
or bookmarks) that received at least 2.5k stars before August 2017 (number of stars is a proxy for
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popularity [7]). We started with 4, 037 projects. To conduct our analysis, we sampled 351 projects,
providing us a confidence level of 95% with a £5% confidence interval.

To identify a bot, we verified whether it had a GitHub account and analyzed its name and
description looking for bot references (e.g., Bootstrap’s Pull Request Checker bot'). We also analyzed
pull requests, looking for message patterns that could indicate that a profile is a bot (e.g., “This is
an automated pull request to..”). Additionally, we found bots that were properly tagged in the pull
request messages (e.g., Welcome bot).

In each selected project, we manually classified the type of bots. There have been some attempts to
categorize the roles of bots in software engineering, like Storey and Zagalsky [55], who considered
multiple interaction channels (IRC, Slack, and HipChat). Specifically for GitHub bots, Paikari and
van der Hoek [39] categorized the bots according to the interaction characteristics, but did not
analyze the roles that bots play in the development process. Since the purposes of the previous
taxonomies are different from the current study’s goal, we analyzed the task performed by the
bots in the context of pull requests received by OSS projects. Two researchers independently
conducted the manual classification, followed by consensus discussions. At the end of this process,
we identified 93 projects (26.5%) making use of at least one bot.

These bots supported a total of 113, 414 pull requests submitted by 3, 371 different contributors
and merged by 370 integrators. To enable comparison, we retained only those projects that had
been active for at least six months before and six months after the bot adoption. Moreover, when
analyzing the quantitative data from before and after adoption, we noticed that many projects had
too few contributors during one of these periods. Thus, we also discarded projects with 7 or fewer
contributors in these periods (first quartile). At the end of this process, our dataset comprised 44
projects, including active, popular, non-trivial, and diverse OSS projects.

-180 -30 +30 +180
days days days days
T o B PR [l B
-6 . ]/, +1 +6 time
Bot adoption

(first interaction found)
Fig. 1. Time Series overview

After identifying when a bot was adopted in the project, we collected data from 180 days before
and 180 days after this event to conduct the quantitative analysis, as illustrated in Figure 1.

3.2 Understanding the developers’ perspective

We conducted two surveys to understand how contributors and integrators perceive the adoption
of bots to support pull requests. We analyzed pull requests submitted after the bot adoption and
surveyed contributors who submitted pull requests and integrators who merged them.

The surveys were designed based on recommendations from Kitchenham et al. [29]. We also em-
ployed principles for increasing survey participation [48], such as sending personalized invitations,
allowing participants to remain completely anonymous, and asking closed and direct questions.
The contributor and integrator surveys were set up as online questionnaires.”

Thttps://github.com/mozilla/pdf js/pull/8634
“The questionnaires can be found online at [https://github.com/mairieli/ CSCW-2018/tree/master/questionnaires].
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Both surveys were sent on December 18, 2017, and we received answers for a 30-day period.
Participation was voluntary and the estimated time to complete each survey was 5-10 minutes. In
our first survey, our target population comprised 3,371 contributors who made their valid e-mail
addresses publicly available via the GitHub API. We received answers from 205 people. Our second
survey was delivered to 368 integrators with valid e-mail addresses. We received 23 answers. For
both surveys, we had a response rate of ~ 6%. Our contributor survey had six questions:

Q1. Did you notice the participation of bots during your pull request submission/acceptance
process? Choices: {yes, no}

Q2. Based on your experience, it was easier to contribute to the project... Choices: {When my
pull request was assisted only by project members, When my pull request was assisted only
by a bot; When my pull request was assisted by bots and members}

Q3. Based on your experience, rate the relevance (on a 5-point Likert Scale with neutral: Very
Irrelevant, Irrelevant, Neutral, Relevant, Very Relevant) of bot support in your project for
the following tasks: explain the project guidelines (e.g., explain how to contribute for new
contributors); decrease code review effort; decrease time to merge/reject of pull request;
automate the continuous integration task; run tests/quality assurance tasks; license issues
related to contributions; improve the social interaction between integrators and contributors.

Q4. In your project, do bots support contributors/integrators in other tasks not mentioned above?
If yes, in which tasks?

Q5. What are the problems/challenges of using bots in your project?

Q6. What features would you like to add to the bot(s) used in your project?

The integrators’ survey comprised the last four questions (Q3-Q6).

3.3 Data analysis

First, we quantitatively collected and analyzed the number of projects using bots, the number of bots
per project, and the types of bots used (RQ1). Second, to answer RQ2, we used the non-parametric
Mann-Whitney-Wilcoxon (MWW) test [67] to identify whether there were differences among
project indicators (e.g., number of comments, number of commits, and close time) collected from
pull requests before and after bot adoption. We also used Cliff’s Delta statistic [46] to quantify
the difference between these groups of observation beyond p-value interpretation. Moreover, we
observed the monthly distribution of each metric to search for indications of changes.

In the third analysis, we used a card sorting approach to qualitatively analyze the answers to our
surveys’ open-ended questions (RQ3). Card sorting is a widely used technique for creating mental
models and deriving taxonomies from data [? ], evolving categories to identify common themes.
Three researchers conducted this analysis in two steps. In the first step, each researcher analyzed
the answers (cards) independently and applied codes to each answer, sorting them into meaningful
groups. This was followed by a discussion meeting until they reached consensus on the code names
and on the categorization of each item. At the end of this process, the answers were sorted into
high-level groups. In the second step, the researchers analyzed the categories, aiming to refine the
classification and group related-codes into more significant, higher-level categories and themes. Our
card sort was open, meaning we had no predefined codes or groups; the codes emerged and evolved
during the analysis process. In addition, we quantitatively analyzed closed-ended questions (RQ3)
to understand developers’ perceptions about the relevance of bot support on software development
tasks. In Section 4.3, we highlight the main themes that emerged along with quotes extracted from
the open questions, which were chosen based on their representativeness.
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4 RESULTS

In the following, we report the results of our study, grouped by each research question.

4.1 RQ1. How common are bots in GitHub projects?

We identified 48 different bots in 93 projects. We classified the bots according to the tasks they
perform:

Ensure License Agreement Signing (10 bots). Bots that comment on pull requests to direct
contributors to sign a Contributor License Agreement (CLA) (e.g., Googlebot, Facebook Community
bot, and meteor-bot).

Report Continuous Integration Failures (10 bots). Bots responsible for notifying contributors
of test failures in CI tools (e.g., Elastic Machine, swift-ci, and The Travis Bot).

Review Code (7 bots). Bots that analyze source code (e.g., code style, code coverage, code quality,
and smells) and give feedback (e.g., Hound bot — verifies code style violations; Coveralls bot -
shows which parts of the source code are not covered by the test suite).

Review Pull Requests (7 bots). Bots that analyze pull requests and comment on them, identifying
potential mistakes and how to fix them (e.g., Node.js GitHub Bot, Calypso Bot, and Bootstrap’s Pull
Request Checker Bot).

Assign Reviewers (7 bots). Bots that aks a maintainer to review the pull request (e.g., Rust highfive
robot).

Welcome Newcomers (4 bots). Bots that send a welcome message to new contributors (e.g.,
Welcome bot).

Merge Pull Requests (4 bots). Bots that test pull requests and merge them if they pass (e.g.,
Kubernetes Submit Queue).

Scrap the Forge (3 bots). Bots external to the project that look for potential enhancements and
automatically open pull requests. They look for typos in README files (ReadmeCeritic), known
vulnerabilities (Snyk bot), and outdated domain usage (npm-to-cdn-bot).

Run Automated Tests (2 bots). Bots that run tests to validate the changes made in the pull
request (e.g., pdf.js test).

Build (2 bots). Bots designed to build the application upon request (Mary Poppins bot and pdf.js
bot).

Control Dependencies (1 bot). Greenkeeper is a bot that informs when updates in the dependen-
cies will break the software, reporting the analysis as a comment on the pull request.

Create Issues (1 bot). Doctrine Bot automatically opens issue on the bug tracker to help contribu-
tors.

Run Benchmarks (1 bot). Svelte-Bot is a bot that runs a benchmark and shows the results as a
comment. It tests many application functions using different configurations - e.g., different versions
and web browsers - to evaluate the application’s performance.

The number of different bots per programming language is presented in Figure 2. To analyze how
the projects’ characteristics affect the use of bots, we show the domain, the main programming
language, and the first bot adoption date for each project. We found 76 projects using only one
bot, 16 projects using two bots, and only one project using three different bots. Ten of these bots
performed two tasks per project, one bot performed three tasks, and the other 37 bots performed a
single task. We noticed that bot adoption rose in popularity in 2014, with 17 adoptions. We also
observed a similar rate of adoption by software projects in 2015 (19 projects) and 2017 (18 projects),
with a peak in 2016 (31 projects). Regarding programming languages, JavaScript comprised the
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largest sample of the selected projects. These projects normally use more than one bot. In contrast,

we highlight Ruby, Objective-C, and Python, which represented more than 5 projects in our sample,
but use a single bot.

o
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Fig. 2. Characteristic of projects versus bot adoption

RQ1. We found that almost one-third of the projects adopted at least one bot. The "boom"
of adoption occurred after 2013. Projects commonly adopt bots to ensure license agreement
signing, report continuous integration failures, assign reviewers, and automatically review
the source code and the pull requests.

4.2 RQ2. How do the characteristics of pull requests compare before and after the bot
adoption?

To look for changes in pull requests characteristics, we examined several metrics across the 44
selected projects, as can be seen in Figure 3. The top graphs refer to merged pull requests while the
bottom graphs represent the unmerged pull requests for each six consecutive time intervals (months)
before and after the first adoption of a bot. We used a log scale to normalize the distributions. The
median values before and after bot adoption were, respectively: 15 and 17 for number of merged
pull requests and 8 and 9 for unmerged; 131 and 116 hours for time to merge a pull request; 537 and
332 hours for time to reject a pull request; 19 and 27 for number commits per merged pull request
and 16 and 19 for unmerged; and 2.7 and 3.1 comments for merged pull request and 3.9 and 3.7 for
unmerged.

To verify whether we could evidence statistically significant differences for number of comments,
commits, changed files, and close time for each project before and after bot implementation,
we conducted Mann-Whitney-Wilcoxon tests for the different metrics. Our data shows that the
percentage of the projects that showed statistically significant differences for merged and unmerged
pull requests, respectively, were: (i) for the number of comments received per pull request, 66% and
39%; (ii) for number of commits per pull request, 34% and 25%; (iii) for number of changed files, 34%
and 25%; and (iv) for time to close pull requests, 45% and 32%. The number of comments for merged
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Fig. 3. Distribution of metrics before and after bot adoption

pull requests presents the more noticeable difference, since we found a statistically significant
difference for 29 out of 44 projects (66.0%). When analyzing the effect-size (using Cliff’s delta), we
noticed that the number of comments increased in 20 projects (5 with large, 4 with medium, 9 with
small, and 2 with negligible effect-sizes), while it decreased for 9 (1 with large, 2 with medium, 4
with small, and 2 with negligible effect-sizes).

RQ2. The statistical results for each project showed that although there are statistically
significant differences for some projects regarding the number of commits, number of changed
files, and closed time before and after the bot adoption, the differences are not consistent
across the projects. The most noticeable difference regarded the number of comments per
pull request; however, for some projects the effect size indicated an increase and for others a
decrease after bot adoption.
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4.3 RQ3. How do contributors and integrators perceive the relevance of bot support
during the pull request process?

When asked if they noticed the participation of bots during the pull request process, 200 (97.6%)
contributors answered “yes” Moreover, as can be observed in Table 1, more than 90% of our
respondents answered that they find it easier to submit a pull request when bots and project
members collaborate during the review process.

Table 1. Contributors’ answers on whether it is easier to contribute to the project when pull requests are
assessed by bots or project members

l Assisted by [ # of answers (%) ]
Bots only 7 (3.4%)
Project members only 9 (4.4%)
Bots and project members | 189 (92.2%)

We also asked contributors about their perception of the relevance of bots to support specific
tasks. The answers followed a 5-point Likert scale with neutral, from “Very Irrelevant” to “Very
Relevant.” In Figure 4, we observe that most of the respondents perceived bots as helpful for most
of the tasks. More than 90% of them highlighted that bots are relevant to automate continuous
integration and run tests/quality assurance tasks. On the other hand, only 38% of the respondents
somewhat agreed that bots are relevant to improve social interaction, which can indicate that they
do not perceive bots as social proxies.

Q1. Explain the Project Guidelines  20% 16% 64%
Q2. Decrease code review effort ~ 20% 18% 62%
Q3. Decrease time to merge / rejeggguieusli 5% 1850 o0
Q4. Automate the continuous integration task 2% 8% 90%
Q5. Run tests / quality assurance tasks 5% 3% 92%
Q6. License Issues related to contributions 8% 28% 64%
Q7. Improve the social interaction between vl P P
integrators and contributors s
100 50 0 50 100
Percentage

Response Very irrelevant Irrelevant Neutral Relevant Very relevant

Fig. 4. Contributors’ perceptions on the relevance of bot support in specific project tasks

Regarding integrators, we found that their perception was quite similar to the contributors, as
shown in Figure 5. The main difference can be observed in Q1, for which 64% of the integrators did
not agree that bots are capable of explaining project guidelines.

4.3.1 Challenges in using bots in pull requests. We openly asked contributors and integrators about
the “problems/challenges of using bots” The challenges were grouped into 16 categories, as can be
seen in Table 2.

From the developers’ perspective, the most recurrent challenge with the current bots is that bots
have poor decision support mechanisms (39 mentions). This challenge includes the cases in which
the respondents say that bots “are not smart enough yet,” which suggests they were expecting the
bots to help them solve the hurdles, and not only raise problems, as a respondent explained: “bots
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Q1. Explain the Project Guidelines 50% 14% 36%

Q2. Help during the code review 23% 5% 73%

Q3. Decrease time to merge / reject your Pull o - o
Request

Q4. Automate the continuous integration required 14% 5% 82%

Q5. Run tests / quality assurance tasks 14% 0% 86%

Q6. License Issues related to contributions 14% 23% 64%

Q7. Improve the social interaction between 4% 27% 320
integrators and contributors

'
100 50 0 50 100

Fig. 5. Integrators’ perceptions on the relevance of bot support in specific project tasks

Table 2. Problems/challenges introduced by bots in pull requests

[ Challenge [ Contributors [ Integrators ]
Bots have poor decision support mechanisms 39 (19.0%) 1(4.5%)
Bots provide non-comprehensive/poor feedback 31 (15.1%) -
Bots take wrong actions 18 (8.8%) -
Bots are not able to review code 17 (8.3%) -
Bots require manual intervention 9 (4.4%) 1(4.5%)
Bots introduce communication noise 4(1.9%) -
Tailored bot configuration 3(1.5%) 8 (36.3%)
Lack of information on how to interact with the bot 3 (1.5%) 1(4.5%)
Bots have lack of guidance for newcomers 2 (1.0%) -
Bots require high maintenance 1(0.5%) 2(9.1%)
Difficulty to coordinate multiple bots 1(0.5%) 1(4.5%)
Contributors don’t understand the value of bots for maintainers - 2(9.1%)
Bots reduce human-human interaction - 1(4.5%)
Difficulty to find the appropriate bot - 1(4.5%)
Lack of available resources - 1(4.5%)
No challenge 79 (38.5%) 5 (22.7%)
Did not answer / N/A 23 (11.2%) -

help streamline repetitive tasks, but cannot help with the decision-making, such as deciding if a
build-passing/CI-approved request is indeed useful for the project at large.” They also suggested that
bots need to learn from previous interactions: “Sometimes they don’t learn from other situations.”

Several developers (31) also complained about the way the bots interact, saying that the bots
provide non-comprehensive/poor feedback. In one example of bots’ inability to provide adequate
feedback, a respondent complained that bots can provide harsh responses, and thus “feel unfriendly
in certain situations.” This challenge relates to the way the bot is designed to provide answers,
which can at times be misleading and unhelpful. One respondent mentioned that the bots do not
provide “enough information on how to solve the issue,” while another reported that “the worst
problem is when the bot answers something that is not helpful”

With 18 mentions, bots take the wrong action was the third most reported problem of the current
bots. In general, respondents complained that bots mistakenly close pull requests. One example
was “closing an issue after X days of no activity (without having a single answer/post on the issue).”
Other respondents mentioned race-conditions and test-flakes: “A significant challenge is coming
across test-flakes. .. tests sometimes tend to fail for reasons completely unrelated to the changes
being introduced through the patch”
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Some other categories, although less recurrent, called our attention. Two of them refer to
communication issues: bots introduce communication noise; and lack of information on how to
interact with the bot. These challenges add to bots provide non-comprehensive/poor feedback, showing
that it is necessary to improve the bot’s usability. Another interesting challenge mentioned by
respondents is that bots lack guidance for newcomers, which is a trending topic in OSS [53].

From the integrators’ perspective, we observe that the challenges somewhat differ from those
mentioned by contributors. It is clear that the challenges from the integrators’ perspective relate
more to choosing, setting up, and maintaining the bots. The most recurrent challenged mentioned
by integrators refers to bots’ configuration (Tailored bot configuration), which was reported by
8 respondents (36.3%), for instance: “configuring bots can be a lengthy process,” and “designing
the execution environment for our bot and giving it appropriate authority is difficult and takes
time and effort” Two participants also mentioned that bots “are developed in an unstable way,” so
“they require high maintenance.” We found other challenges: difficulty to find the appropriate bot;
difficulty to coordinate multiple bots; and lack of available resources.

Notably, in addition to configuration and maintenance, two integrators reported that a challenge
they see is that “developers don’t understand the value of bots for maintainers.” We could observe
this fact from the feedback and the challenges reported on the developers’ survey. One of them
offered a nice explanation on that matter: “bots aren’t magic, and sometimes it’s hard for people to
understand that they too are software that has to be carefully written. In other words, it’s easy for
people to put ungrounded faith or hope in a bot just because it’s a bot”

4.3.2 Bot improvements. We also asked our participants about improvements and features they
would like to add to bots. Most developers (55.6%) and 6 integrators (27.3%) did not suggest anything.
The other answers were grouped, as can be seen in Table 3.

Table 3. Improvements proposed by developers and integrators

l Features [ Contributors [ Integrators ]
Make the bots smarter 19 (9.3%) -
Improve code review 16 (7.8%) 2(9.1%)
Improve notification/awareness 11 (5.4%) 3(18.2%)
Enhance user interaction 8 (3.9%) 2(9.1%)
Recommend Related/similar PRs 5(2.4%) 1(4.5%)
Provide contribution guidelines 5 (2.4%) 1(4.5%)
Improve feature communicability 5(2.4%) -
Recommend related artifacts 5(2.4%) -
Assign Reviewers 5(2.4%) -
Provide a way to request human help 4(1.9%) -
Release/deploy control 3(1.5%) 2(9.1%)
Provide guidelines for newcomers 2 (1.0%) -
Keep the history of changes 2 (1.0%) 1(4.5%)
Manage commit queues 2(1.0%) -
Estimate response time 2(0.5%) -
Calculate metrics 1(0.5%) 1(4.5%)
Answer specific questions 1 (0.5%) -
Personal assistant 1(0.5%) -
Provide conversation statistics 1(0.5% -
Label issues automatically - 2(9.1%)
Measure performance - 1(4.5%)
Offer polls to recommend new project features - 1(4.5%)
Resolve merge conflicts - 1(4.5%)
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From the developers’ perspective, the most recurrent suggestions relate to a desire to make
the bots smarter, since “they are not smart enough yet.” Most of the respondents mentioned that
bots should learn from previous interactions and bring insights from the source code or issue
tracker so they can provide better support to pull requests: “intelligence based on others issues and
pull requests,” and “bot could learn about all code on GitHub.” One respondent, who previously
mentioned a challenge related to flaky tests, proposed: “the ability for it to recognize test flakes by
analyzing common failures often occurring across multiple pull requests over time, and to restart
test jobs automatically when this happens.” Still, some others provided more generic answers,
briefly mentioning: “Machine learning” or “Al”

Another recurrent feature request from contributors regards improving code review. They men-
tioned different features, ranging from “check code style guidelines” to “auto-correct typical mis-
takes” More specifically, four developers suggested using “more linting code capabilities.”

Improving the ways users can interact with bots was also mentioned. Since most bots are
reactive and do not have any available interaction feature, 8 developers mentioned enhance user
interaction as a good way to improve bots. One of them requested that: “it will be better to add
more interactivity to some bots.” Improve notification/awareness was also a recurrent category.
Contributors mentioned better ways to remind project owners or reviewers about unresolved issues
(e.g., “keep reminding repo owners about relevant issues that were not resolved or closed”), to
send notifications about specific areas (e.g., “bots that remind me of any open issues in my areas
of interest”), and notifications about the progress of the issue (e.g., “tracking all activity about
this pull request”). Contributors also requested easier ways to learn how to interact with the bots,
mentioning they need to know how to communicate their features.

In addition to the most recurrent ones, the developers mentioned as potential new features:
recommend related PRs and recommend related artifacts. Additionally, two developers mentioned
that bots would provide great value in receiving newcomers. One of them mentioned that a bot
could be a “guide for first-time contributors. Where to get help from, e.g., mailing list, IRC, Slack”
The second one mentioned that a bot could “guide people to low hanging fruits/issues and help
them to engage in the project”

From the integrators’ perspective, we noticed that improving interaction and receiving notifi-
cations from the bots are desired features. The most recurrent request refers to ways to improve
notifications/awareness. However, as with the challenges, they focused on making easier integration
and project maintenance. We can observe in Table 3 that integrators and developers mentioned
features to provide release/deploy control, keep the history of changes, and calculate metrics, while
only integrators mentioned the last four features on the table, which relate to improving project
maintenance.

RQ3. Contributors and integrators reported 16 challenges for using bots in OSS projects.
We found that 37% of these challenges were perceived by both contributors and integrators.
Twenty four new features were also mentioned, with 33% of intersection in their suggestions.
We observed that, while contributors want smarter bots that can recommend related artifacts
and issues, and that have improved ways to interact, integrators reported both challenges and
features related to facilitating bot and project maintenance.

5 DISCUSSION

An interesting result that emerged from the survey is the request for smarter bots. According
to Farooq and Grudin [16], bots involve human-machine integration, which implies partnership.
However, for OSS communities, this partnership still has room for improvement; as Table 2 shows,
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several developers complained that bots have poor decision support mechanisms and bots take wrong
actions. Moreover, developers and integrators provided an extensive list of desired features, such as
making the bots smarter, recommending related/similar PRs, assigning reviewers, answering specific
questions, and automatically labeling issues. Indeed, we could observe that the bots for GitHub
OSS projects perform simple and repetitive tasks (Section 4.1), aiming to reduce integrators’ effort.
Little support is provided to the contributors at large. This poor support may justify the challenge
mentioned by integrators that developers don’t understand the value of bots for maintainers.

Existing literature charts many examples of bots that could help developers make decisions. Solu-
tions to the aforementioned challenges could be inspired by intelligent interactive systems, which
leverage techniques for rational decision coaching [35]. Bots could collaborate with developers by
asking meaningful questions that lead them to decisions. Making smarter decisions (e.g., deciding
the usefulness of a build) would require bots to be enriched with learning models for the target
criteria (in the example, usefulness). This is a trending topic in other domains. For example, some
bots in the education field learn from previous interactions and estimate students’ interest level [38]
or learning styles [30], adapting their interactions to improve collaboration. Similar models could
be used in OSS development. Software Engineering literature on recommending systems explores,
for example, issue/bug similarity techniques [2, 66, 74], approaches to retrieving related API or
Q&A discussions by analyzing a piece of code or a question [43, 59, 73], and ways to recommend
people given an issue or a pull request [3, 72]. To design smarter bots to support developers on
OSS projects, there is room for research on how to combine the knowledge on building bots and
modeling interactions from other domains with the techniques and approaches available in software
engineering.

According to Lee et al. [33], “bots change the way people socialize when introduced to a commu-
nity communication platform” However, in our survey almost 50% of the contributors and more than
50% of the integrators disagreed with the premise that bots improve social interaction. Moreover,
from the answers to the open-ended questions, we observed that challenges and feature requests
related to the way bots interact with developers, such as bots provide non-comprehensive/poor feed-
back and bots introduce communication noise. In addition, requests to improve notification/awareness
and enhance user interaction can also be observed in the top requested features (Table 3). We learned
from the literature that the customer service field had investigated similar problems. Gnewuch et al.
[21] highlighted that most customer service bots could not meet users’ interaction expectations.
The authors listed issues such as not using appropriate language and giving generic information,
and proposed requirements to develop enriched bots.

Better communicating a bot’s features is another potential improvement on how bots interact
with developers. According to Lebeuf et al. [31], this is important because “the bot’s purpose —
what it can and can’t do — must be evident and match user expectations” HCI studies provide
some steps toward understanding how bots should convey their features (what they can do, their
context state, and intelligence level [25, 64]); from the CSCW perspective, it would be relevant
to understand how the proposed approaches improve the success of accomplishing collaborative
tasks.

Our study results also underscored that improving support for newcomer onboarding was
mentioned both in challenges and as a desired feature. It is well-known that onboarding to an OSS
community can be a journey full of obstacles [50]. This is especially relevant with the rise of casual
contributors [42] and the number of quasi-contributors who do not succeed in contributing [52].
The literature offers potential ways to support newcomers and make this process smoother [9, 51,
54, 66, 69]. It would be beneficial for communities to take these approaches and guidelines into
consideration to provide, as requested, contribution guidelines, or to offer an interactive way to help
new members feel welcome and learn the contribution process. To provide this step, researchers
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might find inspiration in the education domain, where bots have been proposed to advise students
[20] and help students to share knowledge within communities [45].

From the integrators’ perspective, we observed that the concerns and ideas about desired features
pertain to bots’ maintenance and setup. Bot developers need to consider the diversity of languages,
frameworks, and platforms used in OSS projects. We believe that the setup and maintenance
challenge can be explained by the maturity level of bots in the GitHub pull request context.

As decribed by Storey and Zagalsky [55], bots implement “a conduit or an interface between users
and services, typically through a conversational user interface.” Bots provide new forms of interactions
with already existing tools [8], automating tasks and binding services together. However, GitHub
bots are not as evolved as in other domains (e.g., education and customer service) and developers
feel that bots should provide smarter ways to access current tools and services.

6 THREATS TO VALIDITY

While our results only apply to popular OSS projects hosted on GitHub, many relevant projects
are currently hosted on this platform [15]. Our results are also limited by our selection of projects,
which one might argue is small or non-representative. However, the selected projects are diverse
in several dimensions, such as domain, programming languages, popularity, and activity. We
also used a statistical approach to randomly select a sample of projects (see Section 3.1 for more
details). Moreover, we likely did not discover all possible pull request characteristics that bots can
influence. Even analyzing several projects, we could not find any statistically significant differences.
This could be due to the presence of different bots with different goals and bots external to the
projects, which can result in different outcomes. Future work can analyze specific types of bots.
Moreover, most bots are designed to support maintainers facilitating their tasks. To complement
our quantitative analysis, we conducted a survey to gain information from the stakeholders who
interact with the bots. With our methodology and infrastructure, similar analysis can be conducted
in the future to explore additional details about bot usage on GitHub. For replication purposes, we
made our data and source code publicly available.®

Finally, since we leverage qualitative research methods to categorize the open-ended questions
asked in our surveys, as well as to classify bots, we may have introduced categorization bias.
To mitigate this bias, we conducted this process in pairs and carefully discussed categorization
among the authors. Also regarding our surveys, the order that we presented the questions to the
respondents may have influenced the way they answered them. We tried to order the questions
based on the natural sequence of actions to help respondents understand the questions’ context.
We designed our survey to be short, with anonymous responses and voluntary participation.

7 CONCLUSION

In this paper, we showed that bots are rather common (one-third of the projects in our sample adopt
them) and are used for a variety of tasks, such as ensuring license agreement signing, reporting
continuous integration failures, reviewing code and pull requests, and assigning reviewers (RQ1).
When we quantitatively compared pull requests characteristics before and after bot adoption (RQ2),
we could not find consistent statistically significant results across the analyzed projects. The only
noticeable difference regards the number of comments per pull request, which increased for some
projects and decreased for others. In our surveys (RQ3), most contributors and integrators see
relevance of bot support for explaining project guidelines, decreasing code review effort and time
to merge or reject pull requests, automate continuous integration tasks, and deal with license issues

Shttps://github.com/mairieli/ CSCW-2018
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for contributors. However, they manifested diverging opinions regarding the relevance of bots for
improving social interaction in the project.

Contributors and integrators reported 16 challenges for using bots in OSS projects and 24
new features or improvements. In general, little support is provided for contributors’ work and
newcomers. While contributors want smarter bots, integrators want tailored bot configuration. As
we discuss in the paper, the literature of the education, consumer service, software engineering,
and HCI fields can help GitHub bot designers to enhance existing bots to achieve a higher level of
partnership with contributors and integrators.
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